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GNN Applications
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Image source: Wang, Pengyang, Yanjie Fu, Hui Xiong, and Xiaolin Li. "Adversarial substructured representation learning for mobile user profiling." In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 130-138. 2019.



Image source: Peng, Hao, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao,

GNN Applications
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Lihong Wang, Yanggiu Song, and Qiang Yang. "Large-scale hierarchical text classification with recursively regularized deep graph-cnn." In Proceedings of the 2018 World Wide Web Conference, pp. 1063-1072. 2018.
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GNN Applications

m Relation extraction

Relation: per:parents

Gwathmey was born in 1938, the only child of
painter Robert Gwathmey and his wife, Rosalie, a
photographer.
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Relation: per:cause of death Relation: per:employee of

"It is with great sorrow that we note the passing of Hwang, architect of the Pyongyang regime's
Merce Cunningham, who died peacefully in his ideology of “juche” or self-reliance, was once
home last night of narural causes", the Cunningham secretary of the ruling Workers’ Party and a tutor
Dance Foundation and the Merce Cunningham to current leader Kim Jong-Il.

Dance Company said in a statement.
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Image source: Zhang, Yuhao, Peng Qi, and Christopher D. Manning. "Graph convolution over pruned dependency trees improves relation extraction." arXiv preprint arXiv:1809.10185 (2018).
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Conv. Conv.

Inputs: Word Embeddings X Hidden states Outputs: Object classifiers w
(k dimensions ) (c1 dimensions) (D dimensions )
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Image source: Wang, Xiaolong, Yufei Ye, and Abhinav Gupta. "Zero-shot recognition via semantic embeddings and knowledge graphs." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6857-6866. 2018.



GNN Applications

®Point cloud semantic segmentation
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Image source: Wang, Yue, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. "Dynamic graph cnn for learning on point clouds." Acm Transactions On Graphics (tog) 38, no. 5 (2019): 1-12.



GNN Applications

®Visual question answering
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Image source: Teney, Damien, Linggiao Liu, and Anton van Den Hengel. "Graph-structured representations for visual question answering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9. 2017.




GNN Applications

®Physics systems

Random Control System Trajectories

Pendulum Cartpole Acrobot Swimmerb

gl

Cheetah Walker2d
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Video source: Sanchez-Gonzalez, Alvaro, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia Hadsell, and Peter Battaglia. "Graph networks as learnable physics engines for inference and control." arXiv preprint arXiv:1806.01242 (2018).



GNN Applications

" Molecular fingerprints
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Image source: Duvenaud, David K., Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Aldan Aspuru-Guzik, and Ryan P. Adams. "Convolutional networks on graphs for learning molecular fingerprints." In Advances in neural information processing systems, pp. 2224-2232. 2015.
http://blog.molcalx.com.cn/2019/01/29/fingerprint.htm|



GNN Applications

®Protein interface prediction
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Image source: Fout, Alex, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. "Protein interface prediction using graph convolutional networks." In Advances in neural information processing systems, pp. 6530-6539. 2017.




GNN Applications

mPolypharmacy side effects
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Image source: Zitnik, Marinka, Monica Agrawal, and Jure Leskovec. "Modeling polypharmacy side effects with graph convolutional networks." Bioinformatics 34, no. 13 (2018): i457-i466.



® Graph Representation Learning

= Deepwalk
= LINE
= Node2vec
® Graph Neural Networks
= GCN
= GraphSAGE
= GAT

= Application to Recommender System

= Recent Advances
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N2/ school of Informatics Xiamen University (National Characteristic Demonstration Software School)

@) &N AT HENEESEAR 11




GRAPH REPRESENTATION LEARNING
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Image source: Lecture 7, cs224w, Stanford University




Graph Representation Learning
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Graph Representation Learning

® Given the graph, the only information we have is
G =(V,E)
and their corresponding labels.

= \What are the features?

® \We can do feature engingering:

15
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Graph Representation Learning

® Goal: Efficiently learn task-independent features (embeddings) from graphs.
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Image source: Lecture 7, cs224w, Stanford University



Graph Representation Learning

®Can we directly apply CNN or RNN on graphs?
®Probably no, because images and texts are structured.
®|mages are 2d matrices.
= Texts are sequences.

®Graphs are far more complex.
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Graph Representation Learning

Before the age of deep learning, we have some traditional machine learning
methods:

" | ocally Linear Embedding: low dimensional representations of each node can
be represented by the linear combination of its neighbors.

1
min — X; —ZW--x-
50, k= D W
i J
® Laplacian Eigenmaps: low dimensional representations of connected nodes are
similar.
1 2
mlnz ‘xi — x]‘ Wl]
i,j

® Graph Factorization: matrix factorization.

\ '}; School of Informatics Xiamen University (National Characteristic Demonstration Software School)
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Graph Representation Learning

= Problem of these methods: can’t scale!

mKey idea: If we assume that the connected nodes share similar
properties (e.g. labels) in a graph, we should make their
representations similar.

mRecall something?

m\Word2vec and xxx2vec!

®But how to generate training pairs?

, AP A S 5 A 5 (A5 R RSE LR THFS52ER) ‘@) & DR T wEnnesEAR 19
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DEEPWALK
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Deepwalk: Online learning of social representations

B Perozzi, R Al-Rfou, S Skiena - Proceedings of the 20th ACM SIGKDD ..., 2014 - dl.acm.org
... DeepWalk, a ... DeepWalk generalizes recent advancements in language modeling and
unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk ...

Y% Save P9 Cite Cited by 10106 Related articles All 22 versions

Deepwalk

(U3, U4, Us, U6)

(U7, V10, Vo, US)

Then what?

Skipgram!
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Algorithm 1 DEEPWALK(G, w, d, 7, t)

Input: graph G(V, E)
window size w
embedding size d
walks per vertex
walk length ¢
Output: matrix of vertex representations ® € RIV!*4
1: Initialization: Sample ® from U/!V*?
2: Build a binary Tree T from V
3: for 2 =0 to v do

4: O = Shuffle(V)

5 for each v; € O do

6: W, = RandomW alk(G, v;,t)
7 SkipGram(®, W,,,, w)

8 end for

9: end for

Algorithm 2 SkipGram(®, W,., w)

1: for each v; € W,, do

2:  for each u € W,,[j —w : j+ w| do

3: J(®) = —log Pr(ux | ®(v,))

4: P=P—ax g—i

5: end for

6: end for 22

Image source: Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 701-710. 2014.



Deepwalk
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Image source: Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 701-710. 2014.



Difference

" Notice any difference between Deepwalk and Word2vec?
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= Task: multi-label classification.

= Take Flickr as an example:
= Nodes: users.
® Links: following between users.

= Categories: subscribe to different interest groups (e.g. black and white photos, or

animals).
Data | BlogCatalog Flickr YouTube
Categories 39 195 47
Nodes (n) 10, 312 80, 513 1, 138, 499
Links (m) 333, 983 5, 899, 882 2, 990, 443
Network Density | 6.3 x 1073 1.8 x 1073 4.6 x 10~
Maximum Degree 3, 992 5, 706 28, 754
Average Degree 65 146 5
B RF 1585 (R RS IR T 528R) ‘ & M AT HEnHeEERT 25
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Source: Tang, Lei, and Huan Liu. "Scalable learning of collective behavior based on sparse social dimensions." In Proceedings of the 18th ACM conference on Information and knowledge management, pp. 1107-1116. 2009.



Problems of Deepwalk

mDeepwalk is a pioneer work that builds a bridge between graph
representation and word2vec.

mHowever, it is not specifically designed for graphs.

"How about directed graph? Weighted graph?

() AR5 152 5B (B IRSLIE IR R 5PR)
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LINE




Line: Large-scale information network embedding

J Tang, M Qu, M Wang, M Zhang, J Yan... - Proceedings of the 24th ..., 2015 - dl.acm.org

... We compare the LINE model with several existing graph embedding methods that are able

to scale up to very large networks. We do not compare with some classical graph embedding ...

¢ Save DY Cite Cited by 5808 Related articles All 16 versions

mFirst-order proximity in the real world data is not = me
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sufficient for preserving the global network &
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= Second-order proximity is also very important. O mme— =
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CHl EE EEER il

" [t can be interpreted as nodes with shared neighbors
being likely to be similar. -

: . a Qing S
"The degree of overlap of two people’s friendship ==
networks correlates with the strength of ties ®<.. =
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LINE

m\Vertex 6 and 7 should be
placed closely in the low- 1O

° ° 8
dimensional space as they ZO
4

6 7 O 9
° 010
O

are connected through a
strong tie.

3
=\ertex 5 and 6 should also be

placed closely as they share
similar neighbors.
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Image source: Tang, Jian, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. "Line: Large-scale information network embedding." In Proceedings of the 24th international conference on world wide web, pp. 1067-1077. 2015.



LINE with First-Order Proximity

® For each undirected edge (i,j), the joint probability between vertex v; and

Vj as follows:
1

P1 (Vi» ”j) =

1+ exp(—uju;)

® Use their edge weight as the label, W is total weight in the graph.

= Minimize the KL-divergence between p; and

\ The constant W can be
P1-

omitted in minimization

— z Wijlogpl (vi,vj).

(i,j)€EE

B AF 1A (B RSO ERTFS2PT)
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LINE with First-Order Proximity

mFor each directed edge (i,j), we first define the conditional
probability of “context” v; generated by vertex v; as:

1
1+ exp(—u;"u;)

P1(Uj|vi) =

mHere, we use difference representations for center and context
just like Word2vec, why?

@) &N AT HENEESEAR 31
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LINE with Second-Order Proximity

u|f we consider the second-order proximity, v; can be the

J
neighbor of v;’s neighbor.
exp(u]'-Tui)
|4 /
ZL=|1 exp(ukTui)

where |V | is the number of vertices or “contexts.”

PZ(UJ‘”i) =

() AR5 152 5B (B IRSLIE IR R 5PR)
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LINE with Second-Order Proximity

= Similarly, minimize the KL-divergence:
- Z w;; log p, (Ujlvi)-
JEN (1)
where N (i) is the neighborhood of v;, including first and second order.
= w;; depends on two situation:
= v; is the neighbor of v;: w;; is simply the weight.

ij

= v; is the neighbor of neighbor of v;: w;; = Zke]\f(i) Wik —= d; is the
k
out-degree of v,,.
/EF'ik‘%-ﬁ 155 (R LTS AR T 50 BR) & M AT HEnHeEERT 33
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Combining First-Order and Second-Order Proximities

Two ways:
®Train separately and then concatenate.

®Jointly train the objective function.

@) &N AT HENEESEAR 34
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' (a) GF (b) DeepWalk (c) LINE(2nd)
Visualization of the co-author network. The authors are mapped to the 2-D space using
the t-SNE package with learned embeddings as input. Color of a node indicates the

community of the author. Red: “data Mining,” blue: “machine learning,” green:
“computer vision.”
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Image source: Tang, Jian, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. "Line: Large-scale information network embedding." In Proceedings of the 24th international conference on world wide web, pp. 1067-1077. 2015.



Deepwalk vs LINE

mDeepwalk is actually a returnable DFS.
mLINE is a 2-level BFS.

Can we combine DFS and BFS?

@) &N AT HENEESEAR 36




NODE2VEC




node2vec: Scalable feature learning for networks
A Grover, J Leskovec - Proceedings of the 22nd ACM SIGKDD ..., 2016 - dl.acm.org

N O d e 2 Ve C ... node2vec, an algorithmic framework for learning continuous feature representations for nodes
in networks. In node2vec, ... We demonstrate the efficacy of node2vec over existing state-of...

¢ Save 99 Cite Cited by 10798 Related articles All 25 versions

=Motivation: It is now either DFS (Deepwalk) or BFS (LINE).
It is too rigid to explore the network neighborhood.

mCan we make it flexible?

c,,‘; JERXS E A5 (BRI RSU IR FRSER) ‘9 & M AT AENREEEAR 38
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Node2vec

Jure Leskovec Cited by VIEW ALL

Professor of Computer Science, Stanford University, All Since 2018
Verified email at cs.stanford.edu - Homepage

Data mining Machine Learning Graph Neural Networks Knowledge Graphs Complex Networks Citations 149434 109176
| h-index 145 | 124
i10-index 340 316
TITLE CITED BY YEAR 26000
Inductive representation learning on large graphs 12636 2017 19500
W Hamilton, Z Ying, J Leskovec
Advances in neural information processing systems 30 13000
node2vec: Scalable feature learning for networks 10798 2016 6500
A Grover, J Leskovec
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge ...

2016 2017 2018 2019 2020 2021 2022 2023
How powerful are graph neural networks? 6074 2018
K Xu, W Hu, J Leskovec, S Jegelka
arXiv preprint arXiv:1810.00826

. Public access VIEW ALL
SNAP Datasets: Stanford large network dataset collection 4148 2014
J Leskovec, A Krevl ) .
2 articles 140 articles
Friendship and mobility: user movement in location-based social networks 3511 2011
E Cho, SA Myers, J Leskovec not available available

Proceedings of the 17th ACM SIGKDD international conference on Knowledge ... .
Based on funding mandates

Graphs over time: densification laws, shrinking diameters and possible explanations 3173 2005
J Leskovec, J Kleinberg, C Faloutsos
Proceedings of the eleventh ACM SIGKDD international conference on Knowledge ...
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= Nodes u and s; belonging to the same tightly knit community.

"Nodes u and sg in the two distinct communities share the same
structural role of a hub node.

= Should u be similar to s; or s¢?

® Both, but in different perspective.

() AP R G 1525 (B RSEIE R FR52BR)
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



® Real-world networks commonly exhibit a mixture of such equivalences.
" The representations should be flexible to have similar embeddings for:
® nodes from the same network community;

®m nodes that share similar roles.

() AP R G 1525 (B RSEIE R FR52BR)
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



® |dea: use flexible, biased random walks that can trade off between local
and global views of the network.

= Walk of length 3 (N, (u) of size 3):
" Ngrs(u) = {s4, S5, S3}, local microscopic view.

" Nprs(u) = {s,, s¢, S}, global macroscopic view.

() AP R G 1525 (B RSEIE R FR52BR)

&/ School of Informatics Xiamen University (National Characteristic Demonstration Software School)

42

Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



= The probability from c¢;_4 to ¢; is:

Tvx it (v, x) €E
P(c; = xlci.i =v) =1 Z
0 otherwise

5 The first step is same for both DFS and BFS, by simply setting:

Ty = Wy

() AR5 152 5B (B IRSLIE IR R 5PR)
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= Consider a random walk that just traversed edge (t, v) and now resides at node v.

® For the steps after the second step, we set
Tyx = apq(t' X)Wy

where

GO AP R R 158 5P (45 B KR SE R SR T 52 BR) ‘ & M AT HEnHeEERT 44
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



"p and g are hyperparameters, to control
how we move from the second step.

® Return parameter p:
® Return back to the previous node.
® [In-out parameter qg:

® Moving outwards (DFS) vs. inwards (BFS)

® |ntuitively, g is the “ratio” of BFS vs. DFS

() AP RS 158 85088 (A5 B R SL R IR T 52 BR)
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



Cases:

=p large, q large: non-returnable BFS.

=p large, g small: non-returnable DFS.

=p small, g large: returnable BFS.

=p small, g small: returnable DFS.

#p = g = 1: random walk.

(i) A A S 158 5038 (45 B I RS PR AR TR 52
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Image source: Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855-864. 2016.



DFS
p=1,qg=05
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mDFS travels to the world,
therefore know the
difference.

"BFS only sees the
neighborhood, therefore
only know the difference
between itself and its
neighborhood.

;\ B RF 1585 (R RS IR T 528R) ‘9 & M AT HEnHeEERT 48
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How to Use Node Embeddings

After we obtain the embedding z; for node i, how to use?
= Clustering/community detection: Clustering on nodes z;.

= Node classification: Predict label f(z;) of node i based on z;.

= Link prediction: Predict edge (i, /) based on f(z;, z;) by concatenate, avg, product, or
take a difference between the embeddings:

= Concatenate: f(zl-,zj) = 9([z;, zj])
= Hadamard: f(z;,2;) = g(z; ® z;)
= sum/Avg: f(z;,2;) = g(z; + z))

= Distance: f(z;,2;) = g(||z; — z])

(G PR S 15 3R (45 B R SER AR PR3 BR)
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Shallow Encoders

Embedding
lookup

Shallow encoders:

Node u Dot product

®One-layer of data transformation. R T

Z Zo,

= A single hidden layer maps node Node v
u to embedding z,, by

zZ, = f(zv,v € NR(u)).

Embedding
lookup
(G APASF ER5R (R REIRREFSIR) (50 &N AT tunussers 50
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Image source: Lecture 8, cs224w, Stanford University



Shallow Encoders

Limitations of shallow embedding methods:
® No parameter sharing:
® Every node has its own unique embedding.
® Transductive, not inductive:
® Cannot generate embeddings for nodes that are not seen during training.
" Do not incorporate node features:
® Many graphs have features that we can and should leverage.
m Separated from downstream tasks.
® Training is not end-to-end.

c.’,; JEPIA S 18 R BR (45 B AL R AR PR32 BR)
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GRAPH NEURAL NETWORKS




Deep Graph Encoder

®|nstead of directly learning embedding, can we learn mapping
to generate embedding?

graph convolution

/ droy graph convolution
N
ﬁ / softmax

Q class

Yy /

(i) A A S 158 5038 (45 B I RS PR AR TR 52 ‘@0 2 M 7T HENRESERR 53
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Image source: https://www.experoinc.com/post/node-classification-by-graph-convolutional-network



GCN




Semi-supervised classification with graph convolutional networks
TN Kipf, M Welling - arXiv preprint arXiv:1609.02907, 2016 - arxiv.org

We present a scalable approach for semi-supervised learning on graph-structured data that
is based on an efficient variant of convolutional neural networks which operate directly on ...
Y% Save Y9 Cite Cited by 29001 Related articles All 23 versions 9

®|dea: Node’s neighborhood defines a computation graph.

AP ASE 155K (5B RS R 501 g“*g M * T HENEESHAR 55
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Image source: Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation learning on large graphs." In Advances in neural information processing systems, pp. 1024-1034. 2017.



GCN: Basic Setting

Assume we have a graph G:

® |/ is the vertex set.

® 4 is the adjacency matrix (assume binary).

s X € R™*IVl is 3 matrix of node initial features.

®Node initial features:
® Social networks: user profile, user image.

® Biological networks: gene expression profiles, gene functional
information.

® No features: one-hot vector or constant vector.

B AF 1A (B RSO ERTFS2PT)
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GCN: Architecture

‘A"
<
TARGET NODE R ‘

‘ '

INPUT GRAPH

) APIR 5 15 B3R (A5 B AR SE R AR TSR
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.



GCN: Architecture

Average the information from the previous
layer and apply neural network

\ AP A S 5 A 5 (A5 R RSE LR THFS52ER) ‘9 & M AT HEnHeEERT 58
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.



GCN: Multiple Layers

"Model can be of arbitrary  Layer-2 Layer-1 Layer-0
depth:

" Nodes have embeddings at
each layer.

" Layer-0 embedding of node u
is its input feature, x,,. ® <

" Layer-K  embedding  gets
information from nodes that

are K hops away.

CD; BRHXE 15 %.-3-13:; (4F B TSE AR 52 BR) ‘ [{ M AT HENESESEAR 59
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, P Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale mmender syst: eedings of the 24th ACM SIGKDD Intern nal Confer on Knowledge Discovery & Data Mining, pp. 974-983. 2018.




GCN: Parameter Sharing

" Every node defines a computation graph based on its neighborhood!

Shared L] L.J g
parameters! Nl L ]

%N ¢ %Qg&

LAY 6“‘&

Shared
=i | parameters!

TARGET NODE

l

INPUT GRAPH i .\' A

‘® o 2 L7
= ‘®
'o. ®

(G) APIAS 15 RSB (B RACRILILIRHEIR) (5 A DA T #unsesErs 60
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.




GCN: Deep Encoder

= For each node v, its embedding at Layer-k is h¥:

hd) = x,
hk—l
hllg:U Wk Z - +Bkh5_1 ,k:1,...,K
IN(v)]
UeEN(v)
z, = h;
=W, is the parameter at Layer-k for the averaged neighborhood of node

v,

= B, is the parameter at Layer-k for node v itself.

() AP RS 15 508 (45 B RSO L SR TR 52 BR)
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GCN: Deep Encoder

®|n original GCN paper, the neural network is represented by (sparse)
matrix operations.

hk—l

k u k—1
_ B
he =g w, Z ey T Bt

U€eN (v)

can be formulated as
11
H* = o(D 2AD zH* 'W,)

where A = A + Iy is the adjacency matrix with added self-connections,
D; = ijij is the degree matrix.

() A A S 15588 (A5 BRSSP IR TE 2P
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GCN: Training

®Train in a supervised manner: Directly train the end-to-end
model for a supervised task (e.g., node classification).

Safe or toxic drug?
/ 5

‘

drug-drug interaction network

CIT‘ BHAXS1E %.-3-13:; (45 BT R SE IR IR 52 BR) ‘ [{ M%7 HENRSEERER 63
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.



GCN: Training

®Train in an unsupervised manner:

mUse only the graph structure.

= “Similar” nodes have similar embedding.

mHow to find similar nodes?

®Deepwalk, node2vec, ...

() AR5 152 5B (B IRSLIE IR R 5PR)
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GRAPHSAGE




Inductive representatlon Iearnlng on Iarge graphs
W Hamilton, Z Ying, J Leskov ral ..., 2017 - proceedin gs.neurips.cc

. Here we present Gr: phSAGE a general, inductive ... Instead of tra g individual embeddings
ach node, we leal .. Our algor thm outperforms strong baselin n three inductive ...
Save Y9 Cite Cite dby12636 Related articles All 22 v, ns %

mSo far we have aggregated the neighbor messages by taking
their (weighted) average.

he =gl w z hi* | p e
v k |N(U)| kv

ueN(v)
It is very straightforward and simple.

ECan we make it more sophisticated to learn more latent
information from a graph?

CIT X F a- T.:. %%Fx (4‘5“&1’6 SE AR T 5B ) ‘9 & M AT HEnHeEERT 66
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GraphSAGE

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

Input : Graph G(V, £); input features {x,, Vv € V}; depth K; weight matrices
W* VEk € {1, ..., K}; non-linearity o; differentiable aggregator functions
AGGREGATEy, Vk € {1, ..., K}; neighborhood function N : v — 2V

Output : Vector representations z, forallv € V

1 hY) «x,,YveV; Generalizes the aggregation function
2 fork=1...K do

3 forv € V do

4 hji,(v) ¢ AGGREGATE({h*~! Vu € N(v)});

5 hY + o (W’g . CONCAT(h%—1, hjf\,(v)))

6 end \

7 | hF < h¥/||h*|,, Vv eV Replay sum by concat

8 end

9 z, + hf YoeVp

5 & N AT AENEESERR 67

7

() BPIREF 158 %@Bﬁ, (4F B 1K TRSE R R R 52BR)

&=/ School of Informatics Xiamen Uni rsity (National Characteristic Demonstration Software School)
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GraphSAGE

Mean aggregator
hk
[N (v)

mNearly equivalent to the convolutional propagation rule used in
GCN.

®This concatenation can be viewed as a simple form of a “skip
connection” between the different layers.

AGGREGATE,, = 2
ueN (v)

() AR5 152 5B (B IRSLIE IR R 5PR)
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GraphSAGE

LSTM aggregator
AGGREGA]

'Ex = LSTM(|hE™1, vu € n(N(v))))

= | STMs have the ad

vantage of larger expressive capability.

" Apply LSTM to random permutation of the node’s neighbors

n(N(v)).

@) &N AT HENEESEAR 69




GraphSAGE

Pooling aggregator
AGGREGATE;, = max({o(W o0 h5, + b), Vu; € N(v)})

where max is taken element-wise.

®By applying the max-pooling operator to each of the computed
features, the model effectively captures different aspects of the
neighborhood set.

@) &N AT HENEESEAR 70
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Transductive vs. Inductive

BGNN is usually in a semi-supervised learning mannetr.

#The unlabelled node is involved during training.

mSemi-supervised learning can be grouped into two
categories:

= Transducrtive: The testing data is from the unlablled data.

®|nductive: The testing data is unseen in training.

@) &N AT HENEESEAR 71




Inductive Capacity for New Nodes

unseen nodes.

" E.g. new user and new item in a recommendation system.

\(l N \(Sf

| = | |~

Generate embedding

Train on known graph New node arrives
for new node

JEPIK G &R 5PR (45 BT R SE IR IR 52 BR) ‘ & M AT HEnHeEERT
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Image source: Lecture 8, cs224w, Stanford University

®Many application settings constantly encounter previously
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Inductive Capacity for New Graphs

®The trained GCN parameters can also be used to generalize to
entirely unseen graphs.

mE.g. train on protein interaction graph from model organism A and
generate embeddings on newly collected data about organism B.

Train on one graph Generalize to new graph
ARAS ERSR (B RRRERESR) (00 /ENAT tunnssuis 73

==/ School of Informatics Xiamen University (National Characteristic Demonstration Software School)
Image source: Lecture 8, cs224w, Stanford University



GAT




Graph attention networks
P Veli¢kovi¢, G Cucurull, A Casanova... - arXiv preprint arXiv ..., 2017 - arxiv.org

..., we introduce an attention-based architecture to perform node classification of graph-structured
data. The idea is to compute the hidden representations of each node in the graph, by ...
Y¢ Save DY Cite Cited by 8284 Related articles All 11 versions 99

® Check the neighborhood aggregation of GCN again:

hi=o|W z hkl+Bh’<1
v\ L Nk

u€eN (v)

= What is the weight of each neighbor u € N(v) that contributes to node
v?
1
IN(v)|

" [t simply assumes that all neighbors are equally important to node v.

CIT BHAXS1E %%Fx (45 BT R SE IR IR 52 BR) ‘9 & M AT HEnHeEERT 75
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GAT

® Can we simply learn a weight for each node in the graph?
B |mportant node (e.g. with large degree) deserves large weight.
" Probably not.
" The importance of each node to each neighbor should be different.

mGoal: Specify arbitrary importance to different neighbors of each
node in the graph.

= |dea: Compute embedding h% of each node in the graph following
an attention network.

(i) APIA S 15 250 (IS B ACTRSLILIR 278
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GAT

=First compute attention coefficients of e,, across node v, and
its neighbor u based on their representation at layer k — 1:

_ k—1 k—1
Cou = a(thu ) thv )
me.,., indicates the importance of node u message to node v.

mThe attention network a can just be a simple single-layer neural
network:

a(p,q) = A"[p, q]
where A is a learnable parameter.

@) &N AT HENEESEAR 77
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= Then normalize over all neighbors to get the weight a,,;:
exp €,y

Apu =
ZkEN(v) EXP €vk

5 The final attention-weighted aggregation is:

hk = g z o, W, hk1

ueN(v)

() AR5 152 5B (B IRSLIE IR R 5PR)
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GAT: Multi-Head Attention

mBorrow the idea of multi-head attention from Transformer:

T
h =¢ 2 Z agﬁw,it)hﬁ—l

t=1 ueN(v)

®We got T head and each head t has its own weights.

() AR5 152 5B (B IRSLIE IR R 5PR)
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A t-SNE plot of the computed feature representations of a pre-trained GAT
model’s first hidden layer on the Cora dataset. Node colors denote classes.
Edge thickness attention coefficient.
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Image source: Veli¢kovic, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).



APPLICATION TO RECOMMENDER SYSTEM




Pinterest (i)
11 |
S !

®Pinterest is an American image sharing and
social media service.

® Users can save and discover images, GlFs and
videos in the form of pinboards.

®300M users, 4+B pins, 2+B pinboards.
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https://en.wikipedia.org/wiki/Pinterest

0606090000700000%0
i = h B

mGraph is dynamic: Need to apply to new pins and new boards
without model retraining.

®Graph: 2B pins, 1B boards, 20B edges.

®Rich node features: images, text with pins.

15 A 5K (R R SU LR 521 G & M AT HEnHeEERT 83
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Graph convolutional neural networks for web-scale recommender systems
P i n Sa ge R Ying, R He, K Chen, P Eksombatchai... - Proceedings of the 24th ..., 2018 - dl.acm.org

... Recent advancements in deep neural networks for graph-structured data ... Graph Convolutional
Network (GCN) algorithm PinSage, which combines efficient random walks and graph ...

Y¢ Save Y9 Cite Cited by 3121 Related articles All 8 versions

mGoal: Generate pin embeddings in a web-scale Pinterest
graph containing billions of objects.

®Pin embeddings are essential to various tasks like pin
recommendation, classification, clustering, ranking.

mServices like “Related Pins”, “Search”, “Shopping”, “Ads”.

() APIA 5 18R 5B (5 B AL IR PRS2 BR) %*"‘*9 & M AT HENRSERAR 34
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PinSage: Result

LRI O Bspati Do

PinSage

How to Grow
Swiss Chard
e F -t~ 5]
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.



PinSage: Result

Visual

AP A S 158 5% (3 BRI RS PE IR R 5RPR)
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Image source: Ying, Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. "Graph convolutional neural networks for web-scale recommender systems." In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974-983. 2018.



RECENT ADVANCES




I T
Hyperbolic graph convolutional neural networks

| Chami, ZYing, C Ré... - Advances in neural ..., 2019 - proceedings.neurips.cc

... and scale-free graphs in inductive settings: (1) We ... hyperbolic space to transform input

features which lie in Euclidean space into hyperbolic embeddings; (2) We introduce a hyperbolic ...

Related articles All 17 versions 99

Y% Save DY Cite Cited by 541
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(a) GCN layers. (b) HGCN layers. (¢c) GCN (left), HGCN (right).
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Image source: Chami, Ines, Zhitao Ying, Christopher Ré, and Jure Leskovec. "Hyperbolic graph convolutional neural networks." In Advances in neural information processing systems, pp. 4868-4879. 2019.




... Graph Transformer Network (GTN) that learns to transform a heterogeneous input graph
into useful meta-path graphs for each task and learn node representation on the graphs in an ...

Y% Save 99 Cite Cited by 733 Related articles All 11 versions 99

Graph transformer networks

S Yun, M Jeong, R Kim, J Kang... - Advances in neural ..., 2019 - proceedings.neurips.cc
(1)
Mult-channel Ql

1x1 Conv

ﬂﬁ

Multi-channel
1x1 Conv

Multi-channel Q sl )
1x1 Conv
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Image source: Yun, Seongjun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. "Graph transformer networks." In Advances in Neural Information Processing Systems, pp. 11983-11993. 2019.



Graph structure of neural networks
J You, J Leskovec, K He, S Xie - International Conference on ..., 2020 - proceedings.mir.press

... graphs. Here we systematically study the relationship between the graph structure of a neural
network ... of representing a neural network as a graph, which we call relational graph. Our ...
Y% Save D9 Cite Cited by 132 Related articles All 11 versions 9
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Image source: You, Jiaxuan, Jure Leskovec, Kaiming He, and Saining Xie. "Graph structure of neural networks." In International Conference on Machine Learning, pp. 10881-10891. PMLR, 2020.



Conclusion

After this lecture, you should know:

=\What is a graph representation?

®How does random walk help generate graph representation?

®\What kind of role do BFS and DFS play in node2vec?
=\What is the basic architecture of GNN?

mHow is attention applied to GNN?
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Suggested Reading
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https://zhuanlan.zhihu.com/p/64200072
https://zhuanlan.zhihu.com/p/64756917
https://zhuanlan.zhihu.com/p/64756917

Reference

mTutorial at WWW 2019 on Representation Learning on Networks
m(CS224W Machine Learning with Graphs
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https://www.aminer.cn/nrl_www2019
http://web.stanford.edu/class/cs224w/

Thank youl!

= Any question?

®Don’t hesitate to send email to me for asking questions and
discussion. ©
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